
Grinder Webtest Documentation
Release 0.1

Automation Excellence

March 15, 2012

CONTENTS

i

ii

Grinder Webtest Documentation, Release 0.1

You are reading the documentation for Grinder Webtest, a custom module for the Grinder load test framework designed
to execute Visual Studio .webtest files.

CONTENTS 1

http://www.automation-excellence.com/software/grinder-webtest
http://grinder.sourceforge.net/

Grinder Webtest Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

MOTIVATION

This module was developed in order to work around some perceived limitations of Grinder’s built-in proxy-based
HTTP recording. We found that in some cases, Fiddler was able to more correctly and accurately record the HTTP
requests made by a web-enabled application. Since Fiddler is not designed for load testing, it became necessary to
find an alternative method for running the scenarios it recorded.

Fiddler can export sessions in Visual Studio .webtest format, but Grinder has no native support for this. Hence,
this module was developed, to allow transparent execution of these files as part of a load test. Since the .webtest
format is plain-text XML, it’s possible to extend it to allow parameterization, response capturing and verification, with
a minimum of additional code.

3

http://www.fiddler2.com/fiddler2/

Grinder Webtest Documentation, Release 0.1

4 Chapter 1. Motivation

CHAPTER

TWO

FEATURES

• Run an arbitrary number of tests, with logical grouping in test sets

• Global and local variable parameters

• Built-in and customizable macro functions

• Capturing and verifying response output using regular expressions

• Sequential, thread-based, random, or weighted test sequencing

• Automatic numbering of individual tests for logging and reporting purposes

• Correlating test runner that matches parameters in HTTP responses

• Four configurable levels of logging verbosity

5

Grinder Webtest Documentation, Release 0.1

6 Chapter 2. Features

CHAPTER

THREE

LICENSE

This software is open source, under the terms of the simplified BSD license.

7

http://www.opensource.org/licenses/bsd-license.php

Grinder Webtest Documentation, Release 0.1

8 Chapter 3. License

CHAPTER

FOUR

INSTALLATION

You can obtain Grinder Webtest by downloading a official release from the downloads page, then extracting it to a
location on your disk. In later versions of Jython, you can install like this:

$ jython setup.py install

Alternatively, you can just build and run your tests directly in the source directory (it’ll probably work better that way).

If you want a copy of the latest development version, clone it from Github:

$ git clone git://github.com/a-e/grinder-webtest.git

The only dependency aside from Grinder is Jython. Due to some limitations in earlier versions of Grinder, this module
was designed to work with Jython 2.2.1. Grinder Webtest was developed using Grinder 3.2, and versions of Grinder as
recent as 3.4 are known to be compatible with Jython 2.2.1. Grinder Webtest has not been tested with newer versions
of Jython; if you try a newer version, please let us know whether or not it works.

9

https://launchpad.net/grinder-webtest/+download
http://www.jython.org/
https://github.com/a-e/grinder-webtest
http://www.jython.org/

Grinder Webtest Documentation, Release 0.1

10 Chapter 4. Installation

CHAPTER

FIVE

SETUP

In the root directory of the Grinder Webtest branch, you will find an example grinder_webtest.py script,
along with a grinder.properties that uses it. Refer to the Grinder documentation for more on how to use
grinder.properties, and how to run test scripts.

You can use grinder_webtest.py as the template for your test script; all you need to do is include one or more
TestSets containing .webtest files:

test_sets = [
TestSet(’test1.webtest’),
TestSet(’test2.webtest’),

]

Then create a TestRunner class:

TestRunner = get_test_runner(test_sets)

For the simplest tests, this is all you need to know. For more detail, refer to the webtest.runner documentation.

11

http://grinder.sourceforge.net/

Grinder Webtest Documentation, Release 0.1

12 Chapter 5. Setup

CHAPTER

SIX

RUNNING

To simplify the task of starting the Grinder console and/or agent, a start.py script is provided. This script reads
configuration settings from conf.py.

First, copy conf_example.py to conf.py, and define the appropriate pathnames for your environment. On
Linux, it might look something like this:

paths = {
’java’: ’/usr/bin/java’,
’jython’: ’/usr/local/share/jython’,
’grinder’: ’/usr/share/grinder’,
’properties’: ’./grinder.properties’,

}

Save the changes to conf.py. You can run the tests in a single agent process like so:

$ jython start.py agent

Or, if you would like to use the console, ensure your grinder.properties has
grinder.useConsole=true, then run the console:

$ jython start.py console

Then start agents in separate terminals. Refer to the Grinder docs for more information about the console, agents, and
properties.

Please report bugs and feature requests to the issues page.

13

http://grinder.sourceforge.net/g3/getting-started.html
https://github.com/a-e/grinder-webtest/issues

Grinder Webtest Documentation, Release 0.1

14 Chapter 6. Running

CHAPTER

SEVEN

DEVELOPMENT

If you’d like to work on developing grinder-webtest, fork the project from Github and clone your fork. You may also
want to set up a virtual environment for installing any Python dependencies (pythonbrew is nice), activate it, then do:

$ pip install -r requirements.txt

Some unit tests are included in the tests directory, which you can run using pytest like this:

$ py.test

This will also generate an HTML-formatted coverage report in htmlcov. The tests should work using regular Python,
so you don’t need to muck about with Jython for this.

If you develop any cool new features or fix any bugs, please submit a ‘pull request‘_!

15

https://github.com/a-e/grinder-webtest
https://github.com/utahta/pythonbrew
http://pytest.org/

Grinder Webtest Documentation, Release 0.1

16 Chapter 7. Development

CHAPTER

EIGHT

MODULES

8.1 webtest.runner

This module provides a high-level function called get_test_runner, which creates a WebtestRunner class
for executing Visual Studio .webtest files found in one or more TestSets.

8.1.1 Test Sets and Test Runners

In order to execute a .webtest file, you must wrap it in a TestSet, then create a WebtestRunner class via the
get_test_runner function. Here is a simple example:

from webtest.runner import TestSet, get_test_runner

my_tests = [TestSet(’my_test.webtest’)]
TestRunner = get_test_runner(my_tests)

Each TestSet in the list will be executed by a single WebtestRunner instance. If you have more than one
.webtest file to execute, you can pass all the filenames to a single TestSet:

my_tests = [TestSet(’test1.webtest’, ’test2.webtest’, ’test3.webtest’)]
TestRunner = get_test_runner(my_tests)

The above example would run three tests in sequential order, in the same WebtestRunner instance. This is rec-
ommended if there are dependencies between the tests (either they must always run in a given sequence, or there are
captured variables shared between them–more on this shortly).

Another way would be to create a separate TestSet instance for each test:

my_tests = [
TestSet(’test1.webtest’),
TestSet(’test2.webtest’),
TestSet(’test3.webtest’),

]
TestRunner = get_test_runner(my_tests)

Here, each .webtest could be run in a separate WebtestRunner instance, and not necessarily in sequential order.
You might take this approach if all three tests are independent, and have no need of running in sequence or sharing
variables.

The TestSet might also be used for logical grouping of related tests. For example, if you have some tests for
invoicing, and others for billing, you might create your TestRunner like this:

17

Grinder Webtest Documentation, Release 0.1

my_tests = [
TestSet(’invoice_1.webtest’, ’invoice_2.webtest’),
TestSet(’billing_1.webtest’, ’billing_2.webtest’),

]
TestRunner = get_test_runner(my_tests)

Here again, the two invoice tests will be run in order, in the same WebtestRunner instance, and the two billing
tests will also be run in order, in the same WebtestRunner instance.

This covers the essentials of using this module; the next sections deal with how to initialize and capture variable values,
and how to control the execution sequence.

8.1.2 Parameterization and Capturing

There are two critically important things that are often needed in web application testing: parameterization of values,
and capturing of responses. These are handled by the inclusion of variables. To use variables, you must first determine
which parts of your .webtest file need to be parameterized. Typically, you will parameterize the Value attribute
of some element, for instance:

<FormPostParameter Name="UID" Value="wapcaplet" />
<FormPostParameter Name="PWD" Value="W0nderPet$" />

To turn these into parameters, insert an ALL_CAPS name surrounded by curly braces in place of the Value attribute’s
value:

<FormPostParameter Name="UID" Value="{USERNAME}" />
<FormPostParameter Name="PWD" Value="{PASSWORD}" />

Then, define values for these variables when you call get_test_runner, by passing a dictionary using the
variables keyword:

my_vars = {
’USERNAME’: ’wapcaplet’,
’PASSWORD’: ’W0nderPet$’,

}
TestRunner = get_test_runner(my_tests, variables=my_vars)

Variables do not have a particular type; all variables are treated as strings, and must be defined as such in the
variables dictionary.

This is just one way to set variable values, and would normally be used to initialize “global” variables that are used
throughout all of your .webtest files. You may also initialize “local” variables in a single .webtest file by simply
assigning the ALL_CAPS variable name a literal value when it is first referenced:

<FormPostParameter Name="INVOICE_ID" Value="{INVOICE_ID = 12345}" />

Here, INVOICE_ID is set to the value 12345; any later reference to INVOICE_ID in the same .webtest
file (or in other .webtest files that come later in the same TestSet) will evaluate to 12345. See the
WebtestRunner.eval_expressions method below for details.

Variables can also be set to the result of a “macro”; this is useful if you need to refer to the current date (when the
script runs), or for generating random alphanumeric values:

<FormPostParameter Name="INVOICE_DATE" Value="{TODAY = today(%y%m%d)}"/>
<FormPostParameter Name="INVOICE_ID" Value="{INVOICE_ID = random_digits(10)}"/>

See the webtest.macro module for details on using macros and defining custom macros.

18 Chapter 8. Modules

Grinder Webtest Documentation, Release 0.1

Finally, and perhaps most importantly, if you need to set a variable’s value from one of the HTTP responses
in your .webtest, you can use a capture expression. For example, you may need to capture a session ID
as it comes back from the login request, so that you can use it in subsequent requests. To do that, include a
<Capture>...</Capture> element somewhere in the <Request...> tag. The Capture element can ap-
pear anywhere inside the Request element, though it makes the most chronological sense to put it at the end:

<Request Method="POST" Url="http://my.site/login" ...>
...
<Capture>

<![CDATA[{SESSION_ID = <sid>(.+)</sid>}]]>
</Capture>

</Request>

This will look for <sid>...</sid> in the response body, and set the variable SESSION_ID equal to its contents.
You capture an arbitrary number of variable values in this way, then refer to them later in the .webtest file (or in
subsequent .webtest files in the same TestSet). See the WebtestRunner.eval_capture method below
for additional details.

8.1.3 Sequencing

When calling get_test_runner, you can use the sequence keyword to control how the tests are executed.
Using the same example as above:

my_tests = [
TestSet(’invoice_1.webtest’, ’invoice_2.webtest’),
TestSet(’billing_1.webtest’, ’billing_2.webtest’),

]

The default behavior is for each WebtestRunner instance (each Grinder worker thread, that is) to run all of the
tests in sequential order. This is the same as passing sequence=’sequential’:

TestRunner = get_test_runner(my_tests, sequence=’sequential’)

and would give this runtime behavior:

• Thread 0: invoice, billing

• Thread 1: invoice, billing

• ...

But perhaps you want the first thread to run the invoice tests, and the second thread to run the billing tests. To do this,
pass sequence=’thread’ to get_test_runner:

TestRunner = get_test_runner(my_tests, sequence=’thread’)

Now, if you run two threads, then the first thread will run the first TestSet, and the second thread will run the second
TestSet. If you have more than two threads, then the extra threads will cycle through the list of available TestSets
again:

• Thread 0: invoice

• Thread 1: billing

• Thread 2: invoice

• Thread 3: billing

• ...

Another option is to use random sequencing, so that each thread will choose a random TestSet to run:

8.1. webtest.runner 19

Grinder Webtest Documentation, Release 0.1

TestRunner = get_test_runner(my_tests, sequence=’random’)

With this, you might end up with something like:

• Thread 0: billing

• Thread 1: billing

• Thread 2: invoice

• Thread 3: billing

• Thread 4: invoice

• ...

Finally, it’s possible to assign a “weight” to each TestSet; this is similar to random sequencing, except that it allows
you to control how often each each TestSet is run in relation to the others. For example, if you would like to run
the billing tests three times as often as the invoice tests:

my_tests = [
TestSet(’invoice_1.webtest’, ’invoice_2.webtest’, weight=1),
TestSet(’billing_1.webtest’, ’billing_2.webtest’, weight=3),

]
TestRunner = get_test_runner(my_tests, sequence=’weighted’)

The weight of each TestSet can be any numeric value; you might use integers to obtain a relative frequency, like
the example above, or you might use floating-point values to define a percentage. Here’s the above example using
percentages:

my_tests = [
TestSet(’invoice_1.webtest’, ’invoice_2.webtest’, weight=0.25),
TestSet(’billing_1.webtest’, ’billing_2.webtest’, weight=0.75),

]
TestRunner = get_test_runner(my_tests, sequence=’weighted’)

In other words, the invoice tests will be run 25% of the time, and the billing tests 75% of the time. In this case, you
might end up with the following:

• Thread 0: billing

• Thread 1: billing

• Thread 2: invoice

• Thread 3: billing

• ...

As with random sequencing, each thread will choose a TestSet at random, with the likelihood of choosing a partic-
ular TestSet being determined by the weight. This allows you to more closely mimic a real-world distribution of
activity among your various test scenarios.

8.1.4 Before and After

If you have test steps that must be run at the beginning of testing (such as logging into the application), and/or steps
that must be run at the end (such as logging out), you can encapsulate those in TestSets and pass them using the
before_set and after_set keywords. For example:

login = TestSet(’login.webtest’)
logout = TestSet(’logout.webtest’)
TestRunner = get_test_runner(my_tests, before_set=login, after_set=logout)

20 Chapter 8. Modules

Grinder Webtest Documentation, Release 0.1

The before_set will be run when a WebtestRunner instance is created (normally when the Grinder worker
thread starts up), and the after_set will be run when the instance is destroyed (the thread finishes execution, or is
interrupted).

8.1.5 Classes and functions

Below is the API documentation of the classes and functions defined in this module.

webtest.runner.get_test_runner(test_sets, variables={}, before_set=None, af-
ter_set=None, sequence=’sequential’, think_time=500, sce-
nario_think_time=500, verbosity=’quiet’, macro_class=None)

Return a TestRunner base class that runs .webtest files in the given list of TestSets. This is the primary
wrapper for executing your tests.

variables Default variables for all TestRunner instances. Each TestRunner instance will
get their own copy of these, but passing them here lets you define defaults for commonly-used
variables like server name, username, or password.

test_sets A list of TestSets, where each TestSet contains one or more webtests that must be
run sequentially. Each TestSet will run in a single TestRunner instance, ensuring that they
can share variable values.

before_set A TestSet that should be run when the TestRunner is initialized. Use this if all
webtests need to perform the same initial steps, such as logging in.

after_set A TestSet that should be run when the TestRunner is destroyed. Use this if all
webtests need to perform the same final steps, such as logging out.

sequence How to run the given test sets. Allowed values:

‘sequential’ Each thread runs all TestSets in order.

‘random’ Each thread runs a random TestSet for each __call__.

‘weighted’ Each thread runs a random TestSet, with those having a larger weight being run
more often.

‘thread’ Thread 0 runs the first TestSet, Thread 1 runs the next, and so on. If there are fewer
threads than TestSets, some TestSets will not be run. If there are more threads than TestSets,
the extra threads start over at 0 again.

think_time Time in milliseconds to sleep between each request.

scenario_think_time Time in milliseconds to sleep between each scenario.

verbosity How chatty to be when logging. May be:

‘debug’ Everything, including response body

‘info’ Basic info, including request parameters and evaluated expressions

‘quiet’ Minimal info, including .webtest filename and test names

‘error’ Only log errors, nothing else

macro_class The class (not the instance) where macro functions are defined. If None, the
webtest.macro.Macro class is used; pass a derived class if you want to define your own
macros. See webtest.macro for how to define your own macros.

class webtest.runner.TestSet(*webtest_filenames, **kwargs)
A collection of .webtest files that are executed sequentially, with an implied dependency between them.

8.1. webtest.runner 21

Grinder Webtest Documentation, Release 0.1

webtest_filenames One or more .webtest XML filenames of tests to run together in this
set

Optional keyword arguments:

weight A numeric indicator of how often to run this TestSet. Use this with the
sequence=’weighted’ argument to get_test_runner.

class webtest.runner.WebtestRunner(**variables)
A base class for TestRunner instances that will run TestSets.

NOTE: This class is not meant to be instantiated or overridden directly–use the get_test_runner function
instead.

classmethod set_class_attributes(test_sets, before_set=None, after_set=None,
sequence=’sequential’, think_time=500, sce-
nario_think_time=500, verbosity=’quiet’,
macro_class=None)

Set attributes that affect all WebtestRunner instances.

See get_test_runner for what the parameters mean.

eval_expressions(value)
Parse the given string for variables or macros, and do any necessary variable assignment. Return the string
with all expressions expanded.

Allowed expressions:

{MY_VAR} Expand to the current value of MY_VAR

{MY_VAR = literal} Assign MY_VAR a literal value, and expand to that value

{macro_name(args)} Expand to the result of macro_name(args)

{MY_VAR = macro_name(args)} Assign MY_VAR the result of calling
macro_name(args), and also expand to the resulting value. See the webtest.macro
module for more information.

Any given value that does not match any of these forms is simply returned as-is. If you need to use literal
{ or } characters in a string, precede them with a backslash, like \{ or \}.

The given value may contain multiple {...} expressions, and may have additional text before or after
any expression. For example, if you have previously assigned two variables FOO and BAR:

>>> eval_expressions(’{FOO = Hello}’)
’Hello’
>>> eval_expressions(’{BAR = world}’)
’world’

you can combine them in an expression like this:

>>> eval_expressions(’{FOO} {BAR}!’)
’Hello world!’

The only caveat is that a {...} expression may not contain another {...} expression inside it.

eval_capture(request, response)
Evaluate any Capture expressions in the given request, and set variables to matching text in the given
response. Return the number of capture expressions that were successfully evaluated.

In order for this to work, you should include a Capture element inside the Request element whose
response you want to capture. Each expression inside Capture should follow this format:

22 Chapter 8. Modules

Grinder Webtest Documentation, Release 0.1

{VAR_NAME = regexp}

Where regexp is a regular expression with parentheses around the part you want to capture (leave out
the parentheses to capture the entire match). For example, if your response contains:

... ...

And you want to store the URL into a variable called HREF, do:

{HREF = }

If any capture expression is not found in the response, a CaptureFailed is raised. This makes them
useful for verification too–if you want to ensure that a response contains expected text, just include a
capture expression that looks for it. In this case, you can leave out the parentheses, since you don’t need
to capture any particular part, and if you don’t need to keep the value for later, you can just assign it to a
dummy variable.

For example, to verify that the response includes a form with a “submit” button:

{VERIFY = <form.*>.*<input type="submit".*>.*</form>}

You can include multiple {VAR_NAME = regexp} expressions in the same Capture element, to cap-
ture several variables from the same response, or to do several verifications.

Since regular expressions often contain characters that are precious to XML, such as < > & and so on,
you can enclose your capture expressions in a CDATA block to prevent them from being interpreted as
XML:

<Request ...>
...
<Capture>

<![CDATA[
{VAR_A = }
{VAR_B = ([^<]+))}

]]>
</Capture>

</Request>

You can include {VAR_NAME} references in the right-hand side of the expression; for example, if you
have previously assigned a value to ORDER_NUMBER, and you want to capture the contents of a div
having that order number as its id, you could do:

{ORDER_DIV = <div id="{ORDER_NUMBER}">(.*)</div>}

If ORDER_NUMBER was previously set to 12345, then the above will be expanded to:

{ORDER_DIV = <div id="12345">(.*)</div>}

before matching in the response body.

8.2 webtest.macro

This module defines macro functions that can be invoked from a webtest. Macros provide a way of programmatically
generating things like timestamps, random strings or numbers, or other strings that cannot be hard-coded.

Macro functions are defined as methods within the Macro class. Any methods defined in this module are built-in, so
you can invoke them from any evaluated expression in a .webtest file.

8.2. webtest.macro 23

Grinder Webtest Documentation, Release 0.1

All macro functions are invoked using a lower_case name followed by parentheses. If the macro accepts arguments,
they are passed as a literal string, separated by commas. For example:

<FormPostParameter Name="TIMESTAMP" Value="{timestamp()}"/>
<FormPostParameter Name="INVOICE_DATE" Value="{today(%y%m%d)}"/>
<FormPostParameter Name="DUE_DATE" Value="{today_plus(7, %y%m%d)}"/>

You can also assign the return value of a macro to a variable, for later use:

<FormPostParameter Name="TIMESTAMP" Value="{NOW = timestamp()}"/>
<FormPostParameter Name="INVOICE_DATE" Value="{TODAY = today(%y%m%d)}"/>
<FormPostParameter Name="DUE_DATE" Value="{NEXT_WEEK= today_plus(7, %y%m%d)}"/>

If you want to define your own custom macros, create a derived class containing your custom methods:

from webtest.macro import Macro

class MyMacro (Macro):
Zero-argument macro
def pi(self):

return ’3.14159’

One-argument macro
def square(self, num):

return int(num) ** 2

Two-argument macro
def multiply(self, x, y):

return int(x) * int(y)

Then, tell your test runner to use your macro class:

TestRunner = get_test_runner(... , macro_class=MyMacro)

Any .webtest files that are executed by this TestRunner will be able to call your custom macro methods, optionally
storing their results in variables:

<FormPostParameter Name="NUM1" Value="{PI = pi()}" />
<FormPostParameter Name="NUM2" Value="{square(5)}" />
<FormPostParameter Name="NUM3" Value="{PRODUCT = multiply(3, 6)}" />

All macro arguments are strings; if your arguments are intended to be numeric, you must convert them yourself. The
return value will also be converted to a string; it’s converted automatically when your macro is invoked, but you may
want to convert it yourself to ensure you get exactly what you want.

8.2.1 Classes and functions

class webtest.macro.Macro
Functions that can be invoked from a webtest.

invoke(macro_name, args)
Invoke macro_name, passing args, and return the result. This is a helper method and should not be
called as a macro.

now(format=’%Y-%m-%d %H:%M:%S’)
Return the current date/time in the given format. For example, %m%d%y for MMDDYY format. See the
datetime module documentation for allowed format strings. For example, today(%y-%m-%d) might
return 2011-10-06.

24 Chapter 8. Modules

http://docs.python.org/library/datetime.html

Grinder Webtest Documentation, Release 0.1

random_alphanumeric(length)
Generate a random alphanumeric string of the given length. For example, random_alphanumeric(5)
might return F31B9.

random_digits(length)
Generate a random string of digits of the given length. For example, random_digits(5) might return
28571.

random_letters(length)
Generate a random string of letters of the given length. For example, random_letters(5) might
return KPDLE.

timestamp()
Return a timestamp (number of seconds since the epoch). For example, timestamp() might return
1317917454.

today(format=’%Y-%m-%d %H:%M:%S’)
Return the current date/time in the given format. For example, %m%d%y for MMDDYY format. See the
datetime module documentation for allowed format strings. For example, today(%y-%m-%d) might
return 2011-10-06.

today_plus(days, format=’%Y-%m-%d’)
Return today plus some number of days, in the given format. For example, today_plus(9,
%Y-%m-%d) might return 2011-10-15.

8.3 webtest.correlate

This module provides a subclass of WebtestRunner designed to aid you with finding parameter values in HTTP
responses. It does this by attempting to match parameter names found in each request to the response body of any
HTTP request that preceded it.

To use it, simply call get_correlation_runner in the same way that you call get_test_runner. When
you run your main script, the log output will include additional information about which responses contain certain
parameter names; this is useful in determining where you might be able to capture parameter values.

Note that the correlating test runner is much slower and more memory-intensive than the normal test runner (not to
mention it can produce some gigantic log files). Use this only during development of your scripts, and never for an
actual load test!

class webtest.correlate.CorrelationRunner(**variables)
A WebtestRunner that correlates requests and responses.

correlate(filename, request)
Attempt to correlate parameters in the given request to any responses already received for the current
webtest file.

run_test_set(test_set)
Overridden from WebtestRunner base class, to record the response for each request.

webtest.correlate.get_correlation_runner(test_sets, before_set=None, after_set=None,
sequence=’sequential’, think_time=500, ver-
bosity=’debug’, variables={})

Return a TestRunner base class that runs .webtest files in the given list of TestSets, and does correla-
tion of request parameters with responses.

All arguments to this function have the same meaning as their counterparts in get_test_runner, with the
possible exception of verbosity–the correlating runner is more verbose, printing certain output about found
correlations regardless of the verbosity setting.

8.3. webtest.correlate 25

http://docs.python.org/library/datetime.html

Grinder Webtest Documentation, Release 0.1

8.4 webtest.parser

Provides classes for parsing Visual Studio .webtest XML files.

The Visual Studio .webtest XML format does not seem to be documented anywhere, so all the elements and
attributes used here are inferred from the .webtest files written by Fiddler.

This module defines three important classes:

Webtest Parses a .webtest file and gets a list of Request objects

Request Stores attributes and contents relevant to a single HTTP(S) request

WebtestHandler Used internally by the sax XML parser

The Webtest class is the one you’re most likely to use directly. Simply provide the name of a .webtest XML file:

>>> my_test = Webtest(’my_test.webtest’)

If you provide a filename to the constructor, parsing is done automatically. Alternatively, you can delay parsing until
later:

>>> my_test = Webtest()
...
>>> my_test.load(’my_test.webtest’)

After parsing, the Webtest object will contain a list of Request objects. You can print all requests in summarized
form:

>>> print(my_test)

Or iterate over the requests and do something with them:

>>> for request in my_test.requests:
... do_something(request)

The .webtest file is expected to have one or more Request elements, similar to the one below:

<Request Method="POST" Url="http://www.example.com/">
<Headers>
<Header Name="Content-Type" Value="text/plain" />

</Headers>
<FormPostHttpBody ContentType="text/plain">
<FormPostParameter Name="username" Value="phil" />
<FormPostParameter Name="session_id" Value="12345" />

</FormPostHttpBody>
</Request>

Each <Request>...</Request> defines a single HTTP request to a particular URL, using a method of
GET or POST. Headers are enclosed in a <Header .../> element, and any parameters are sent using
<FormPostParameter .../>, both of which have Name and Value attributes.

Two additional elements are understood by this parser:

<Description>...</Description> A human-readable string that describes what the request
does

<Capture>...</Capture> A block of expressions that may be used to capture or verify content in
the body of the response for this request

26 Chapter 8. Modules

http://www.fiddler2.com/fiddler2/

Grinder Webtest Documentation, Release 0.1

This module is designed to be used with the webtest.runner module, which is specifically designed to work
with the Grinder load test framework, but the parser defined here is not Grinder-specific, and can be used for more
general-purpose parsing of .webtest files.

exception webtest.parser.MalformedXML
Raised when any malformed XML is encountered.

class webtest.parser.Request(attrs, line_number=0)
Store attributes pertaining to an HTTP Request, including:

url The full URL path of the request

headers A list of (Name, Value) for the request header

parameters A list of (Name, Value) for the request parameters

add_header(attrs)
Add a header (Name, Value) pair to the request.

attrs A dict including ‘Name’ and ‘Value’ items

If the ‘Name’ or ‘Value’ attributes are not defined, or if the ‘Name’ attribute is empty, nothing is added.

add_parameter(attrs)
Add a parameter (Name, Value) pair to the request.

attrs A dict including ‘Name’ and ‘Value’ items

If the ‘Name’ or ‘Value’ attributes are not defined, or if the ‘Name’ attribute is empty, nothing is added.

captures()
Return capture expressions as a list of strings.

Normally, self.capture will be a literal block of text as it appeared inside the Capture element;
it may contain extra spaces and newlines. This method strips out the extra newlines and whitespace, and
converts to a list for easy iteration over each capture expression.

class webtest.parser.Webtest(filename=’‘)
Webtest XML file parser.

load(filename)
Load and parse the given .webtest XML file, and store the list of requests found in it.

parse(filename)
Load and parse the given .webtest XML file, and store the list of requests found in it.

class webtest.parser.WebtestHandler
Content handler for xml.sax parser.

characters(data)
Called when character data is found inside an element.

endElement(name)
Called when a closing XML tag is found.

setDocumentLocator(locator)
Set the document locator, for tracking line numbers. This is set by the parser, and is used in
startElement.

startElement(name, attrs)
Called when an opening XML tag is found. If any badly-formed XML is encountered, a MalformedXML
exception is raised.

8.4. webtest.parser 27

Grinder Webtest Documentation, Release 0.1

28 Chapter 8. Modules

PYTHON MODULE INDEX

w
webtest.correlate, ??
webtest.macro, ??
webtest.parser, ??
webtest.runner, ??

29

